OPERATOR ALGEBRAS ~ THE FIRST FORTY YEARS

Richard v. Kadison

1. Introduction. This article is intended to serve as a
"road map" through the subject of Operator Algebras - for the
purpose of putting the more detailed accounts that follow in
understandable relation to one another and to the subject as a
whole. Despite the title, this does not purport to be an
historical treatment of the development of Operator Algebras -
careful or otherwise. 1Insofar as historical statements are made,
they are intended merely as "signposts" that may help the reader
to understand why the subject developed in the way and order that
it did. Even with these modest historical intentions, inevitably,
there will be statements made that may be less than completely
objective.

There are several excellent bibliographies of the subject
available (see, for example, [8,88,91]). Those references that
do appear in this article are only a sampler. They help to form
the bibliographical framework on which this account is built.
Many useful and important references that might well have
appeared will not. Partly this is due to reasons of space and
partly to the fact that they will not have come to mind at the
appropriate moment., Much of this oversight will be rectified in

the more detailed articles that follow.

2. A brief chronology. In a sense that is relatively rare
in subjects based on important ideas, this subject has a
discernible beginning. A paper published in 1930 by von Neumann
[61] defines "rings of operators” (now called "von Neumann

algehras") and proves his celebrated "Double Commutant Theorem".
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The collaboration between Murray and von Neumann that led to the
fundamental series of papers on von Neumann algebras in general
and the so-called, factors in particular began with a paper [58])
that appeared in the 1936 Annals of Mathematics. Those von
Neumann algebras whose centers consist of scalars, the factors,
are subjected to an intensive general analysis through a theory
that compares the "dimensions® of projections in the factors. A
dimension function is defined on the lattice of projections in
the factors. It is noted, on theoretical grounds, that there are
several possible ranges for this dimension function. This range
may be [0,1,...,n)] with n a finite cardinal, or [0,1,...,35].
(The underlying Hilbert space is assumed, in this series of papers,
to be separable.) 1In these cases, the factor is said to be of
type I (respectively, In or Im). The range may be [0,1]
(after a suitable normalization) or f{oO, ‘t)l. In these cases, the
factor is said to be of type II (respectively, IIl or II@).
Finally the range may be {0,’{3}, in which case the factor is
said to be of type III., 1In this same paper, a class of examples
of factors is constructed based on a countable (discrete) group
acting by measure-preserving transformations on a measure space.
By means of this class of examples, specific factors of all types
were exhibited except for factors of types III. This construction
has been extended with great profit and is of active current
interest, We will have more to say about it shortly. The
original construction is referred to as the "crossed product of
an abelian von Neumann algebra by a discrete (countable) group"
in present terminology. The concluding section of [58)
introduces still another concept that forms the basis for an
important current investigation - that of an algebra of unbounded
operators. In earlier papers [64,65], von Neumann pointed out
the subtleties involved in performing algebraic manipulations
with unbounded operators. In (58] it is established that the
operators (including unbounded operators) "“affiliated” with a
factor of type i1, form an (associative) algeb;a.

The second paper of the series [59] appeared a year following

the first, It deals almost exclusively with the trace function -



a linear extension to all operators of the dimensloA FUHCTION O —

projections - on a factor of type II What the extension of the

dimension function must be is relatiiely clear from spectral
theory. Thée linearity of this extension is a good deal less
clear! 1In the process of establishing this linearity two tech-
niques are developed that foreshadow later results oOf great
importance. The first constructs a representation, in the
simplified circumstances afforded by the trace, in a way that
presages the GNS construction. The second represents the trace as
a sum of vector states in a manner that illustrates the form of a
normal state as a sum of vector states,

Between the appearances of the second and third papers in
the "Rings of Operators" series, an important development took
place in the subject. M. H. Stone identified (real) commutative
norm-closed algebras of self-adjoint operators on a Hilbert space
as the algebras of real-valued continuous functions on a compact
Hausdorff space through their structure as real-ordered algebras
[85]. This was a logical extension of his Boolean algebra
representation theorem in which points in a topological space are
extracted from a topological-algebraic structure.

The third paper [62] in the "Rings of Operators" series
enlarged the construction of examples of factors in the first
paper to permit groups of measurability (but not necessarily,
measure) -preserving transformations. Through these examples,
(especially when there was no non-trivial equivalent invariant
measures), factors of type III were exhibited (and recognized)
for the first time.

In the period between the appearance of the third and fourth
papers of the series, several events occurred that were to have
a profound effect on the subject. Near the beginning of the
period, Segal [79] related harmonic analysis on locally compact
topological groups to (non-commutative) self-adjoint operator
algebras acting on a Hilbert space by means of an infinite-
dimensional analogue of the complex group algebra construct.
Throughout this interval, some of the basic tools of functional

analysis were sharpened and developed (separation forms of the



Hahn-Banach theorem, the Alaoglu-Bourbaki theorem, the Krein-
Millman theorem, the Krein-smulyan theorem, etc.). At the end of
the period, simultaneous with the publication of the fourth paper
in the "Rings of Operators" series [60], the Gelfand-Neumark
paper [15) appeared. In it, norm-closed self-adjoint subalgebras
of ®B(¥), the algebra of all bounded operators on the Hilbert
space ¥ , are characterized. In [15) Banach algebras with an
adjoint (*-) operation satisfying certain properties (the so-
called B*-algebras) are proved to be * isomorphic (and
isometric) to norm-closed self-adjoint subalgebras of 8®8(¥). 1In
the process of proving this, the work begun by Stone on
topological-algebraic characterizations of C(X) is taken up:;
and C(X) 1is identified as a commutative B*-algebra,

The fourth paper in the "Rings of Operators" series (60]
settles some of the major problems of the basic theory. Two such
results are the classification of spatial action of factors in
terms of algebraic structure and the existence of two factors

of type II. that are not algebraically isomorphic. The spatial

analysis i; carried out by reduction to and unigueness of the
trace: so that factors of type III could not be included in this
study. In the process of establishing that the classification of
factors into types by the nature of the ranges of the dimension
functions does not complete the algebraic classification of
factors, Murray and von Neumann introduce a new technique of

construction of factors of type II For this they use (what, in

more recent times, is called) the ieft reqular representation of
certain countably infinite groups and pass to the strong-operator
closure of the algebra generated by the representing (unitary)
operators. The groups in question are those for which each
element distinct from the identity has an infinite number of
conjugates, Some examples of these "i.c.c, groups" are the free
non-abelian groups on two or more generators and the group of
those permutations of the integers that move at most a finite
number. The factors associated with each of the free groups is
not isomorphic to the factor arising from the permutation group.

This last factor is seen to be the strong-operator closuxe of an



ascending sequence of finite type I factors. In the fourth paper
of the series such factors are called "approximately finite" (and,
more recently, "hyperfinite“, "matricial”). In that paper, it is

shown that all such factors of type II, are isomorphic.

During the seven years in which tie four papers of the
monumental "Rings of Operators" series were published and in the
half-dozen years following their appearance they produced little
visible effect on the rest of mathematics or other mathematicians.
There is ample evidence that several of our most eminent
mathematicians (then quite young) were intimately familiar with
the details of these papers, and several others had attempted to
master them. Many of the techniques so basic to the subject and
so familiar to specialists today were undeveloped and even
undiscovered at that time. To work in this area then meant
pressing on with little chance of clearly significant advance on
something that might just be a passing curiosity. The problems
Murray and von Neumann had posed were clear cut but not easy to
approach. The von Neumann algebra aspects of the subject
languished for several years.

The Gelfand-Neumark paper [15] initiated the study of the
norm-closed self-adjoint operator algebras, the C*-algebras. Its
authors were certainly inspired by the "Rings of Operators"”
series - the last section of their paper proves interesting
results on the ideal structure of factors, The techniques of
their paper emphasize ideal structure, functionals and, to a
lesser but vital extent, order structure in the Banach algebra,
In [80] Segal fastens on the functional and order structure,
isolating and developing a critical part of the'Gelfand—Neumark
argument to produce what is now known as the "GNS construction" -
a method of associating with states (positive normalized linear
functionals) of a C*-algebra an adjoint preserving (*-)
representation of the algebra. Segal recognized the importance
of the, then, recently-proved Krein-Millman theorem (in the
theory of convexity in topological linear spaces) for this process
- defining pure states (extreme points of the convex set of

states) and showing that they correspond to irreducible



representations of the algebra. He applied these results to the
construction of (infinite-dimensional) irreducible unitary
representations of locally compact groups. (See [16] as well.)
The interest in Hilbert's Fifth Problem (are locally euclidean
groups Lie groups?) and the possibility of solving it by producing,
for locally compact groups, an analogue of the Peter-Weyl theory
for compact groups was a major stimulus at this time. The search
for a non-commutative Fourier-Plancherel-Weil transform and the
general development of non-commutative harmonic analysis were
important associated goals. Weil's profound book [101] had
supplied a significant impetus to this program.

In this period, Segal published a paper [Bl] treating the
foundations of quantum mechanics from the point of view of
operator algebras. Von Neumann had certainly understood the
importance of developing a theory of operator algebras as a
rigorous framework for quantum physics. Segal's early work moved
the focus to the area of C*-algebras = an important technical
addition.

In the late 1940's Dixmier extended the concept of trace on
a factor to that of a center-valued trace on a general von Neumann
algebra [5). Von Neumann's paper [63] expressing the general

von Neumann algebra as a "generalized" direct sum (direct integral)

of factors appeared in 1949 (in the form in which he had prepared
the manuscript in 1938).

From 1946 to the beginning of the fifties an algebraic theory
of von Neumann algebras developed [47,48,72]. Vital tools were
fashioned for a systematic study of these algebras. The early
1950's saw a crucial shift of emphasis from the multiplicative
and ideal structure of C*-algebras to their order structure
{28,30]. This latter emphasis has dominated the technical
development of the subject from that time to the present. The
first half of the fifties saw, too, the study of general
structure for the algebraic and spatial theory of C*-algebras
[30,34], the beginning of a detailed structure theory for an
important class of C*-algebras (the type I C*-algebras) [49]

and the introduction, in algebraic form, of some of the important



constructs from algebra ~ tensor products and crossed products
(55,99,100].

This same period saw the emergence and elaboration of a
viewpoint that is certainly the most basic background motivation
in the subject of operator algebras - the C%-algebra as a "non-
commutative” C(X) and the von Neumann algebra as a "non-
commutative” measure algebra (of bounded Borel measurable
functions on a measure space) [29,82] - though, of course, the
non-commutative measure and integration theory is all but explicit
in the third and fourth papers [(62,60] of the "Rings of Operators"
series, This view of the subject makes clear the fundamental role
it must play as the framework for non-commutative real - analysis
~ and to the extent that real analysis is tied to geometry,
particularly topology and differential geometry, as the basis for
a development of non-commutative geometry. Some small elaboration
of this last statement is necessary. 1In dealing with C*-algebras,
an operator and its adjoint are treated on an equal footing. 1In
the commutative case, the adjoint operator becomes the complex
conjugate -~ so that, while we may be speaking of complex-valued
functions in C(X), the real-valued functions are determining.
For non-commutative complex function theory (holomorphic function
theory) we must turn to the study of certain classes of non-self-
adjoint operator algebras. While that subject is not within the
scope of this article, it is worth noting that a healthy beginning
has been made there (44,73].

In the early fifties, a parallel (but less active) develop-
ment was taking place in the von Neumann algebra aspects of the
subject., The Kaplansky Density theorem appeared (51]: a
determinant theory in factors and its applications to the
beginning of the study of infinite classical groups was developed
[14,31,32,33); an outer automorphism is constructed in a factor
of type II1 (B: Exercise 15, p. 288); derivations of type 1
factors are shown to be inner [50]: the theory of normal states
and their vector representations is completed (6,10,22,56], This
last development had the important consequence of freeing much of

the study of von Neumann algebras from its reliance on tha trace.



and, thereby, including the type III factors within its scope. 1In
particular, the factors of type III are included, by these means,
in the reduction of the spatial classification to the algebraic
classification [22,56].

During this period the Hilbert Fifth Problem was solved
affirmatively [(17,57,103] by more or less topological and group
structural techniques alone. One of the strong initial
motivations for the study of C*-algebras and infinite-dimensional
unitary representations of locally compact groups was removed by
this. Nonetheless, the importance of this study for a theory of
non-commutative harmonic analysis had become clear by this time
[16,21,25,53,54,79]; and the group-operator algebra investigations
continued. The "type problem” for locally compact groups came
under special scrutiny - what are the possible types of the von
Neumann algebras generated by the unitary representations of
various classes of groups [7,25,45,52,54,95].

The initial period, during which Murray and von Neumann
completed their fundamental work on factors, may be described as
the strong, daring and brilliant beginning. The work of the later
forties was innovative - but tentative and experimental., It was
still not clear at that point whether these results were to be the
basis for a subject or to become arcane curiosities., One of the
(non~technical) aspects of the first half of the fifties was its
answer to this guestion. Operator algebras was a subject with
practitioners devoted to its development.

The mid-fifties saw the (general) sclution of the unitary
invariants problem for representations of C*-algebras (34,89);
the introduction of completely positive linear mappings [84] (the
positive linear mappings had appeared in [30]): the abstract
development [97] of the von Neumann diagonalization process [62]
and the Dixmier process [5]}; the construction of an automorphism

(of a 11@ factor with 1IT commutant) that scales the trace and

1
is not unitarily implementable [35); the group-measure space
construct parallel to the approximately finite factors [11]:; the

simplification of some of the harder arguments of the "Rings of



isomorphic factors of type III [71]:; and the representation-
independent characterizations of von Neumann algebras [74,38] (the
first as a dual Banach space and the second as a monotone complete
C*-algebra with “normal” states). Thls same period saw the under-
standing and sharpening of the techniques of the second dual (and
the "universal representation") of a C*-algebra [83,90] for
translating certain problems about such algebras into problems
about von Neumann algebras (where they are often easily settled)
and the affirmative solution to the problem of spectral synthesis
in C%*-algebras through a deeper understanding of pure states and
irreducible representations (39].

In the mid to late fifties, some of the earlier technical
problems that had concerned us were settled, Sakai [75]
clarified the situation of the type of the tensor product (showing
that tensoring by a type III algebra leads to type III von Neumann
algebras) . Takesaki [92] refined our techniques with general
{norm-continuous) functionals on C(C¥*-algebras, making incisive
use of the universal representation technique. Sakai [76]
developed the important polar decomposition for normal functionals
on von Neumann algebras, The problem of whether pure states have
unique extensions from maximal abelian subalgebras of the algebra
of all bounded operators on a Hilbert space to that algebra was
settled negatively (and replaced by that problem for the 'discrete”
maximal abelian algebra and non-normal pure states of it) - this
problem had been posed by the physical interpretation of the
self-adjoint operators on a Hilbert space as the observables of
an irreducible guantum mechanical system with finitely many
degrees of freedom [46], Sakai proved [50,77) Kaplansky's con-
jecture that a derivation of a C¥*-algebra into itself is
(automatically) bounded.

The early sixties bears the stamp of Glimm's splendid work.
His thesis [18] introduced and subjected to a penetrating analysis
one of the most important classes of simple C*-algebras, the
uniformly hyperfinite (uhf) C*-algebras. In [19], Glimm proved
a non-commutative version of the Stone-Weierstrass theorem.

Mackey's conjecture that the type I C*-algebras (groups) are



precisely the ones with smooth duals is proved in (20]). (Dixmier
[9] made valuable contributions to this success.) From the early
to mid-sixties deeper ties between the obviously related subjects
of operator algebras and quantum physics were established (1,24,
41,102]. Effros established the intimate connection among order,
algebraic, and facial structure on the cone of positive elements,
in a C¥-algebra [12]. Takesaki answered important questions
about the possible cross norms on tensor products of operator
algebras [93].

In the mid sixties, derivations and automorphisms reigned.
It had been assumed by all of us that, as with automorphisms (the
"exponentials" of derivations), non-inner derivations of von
Neumann algebras abound. The reverse turned out to be the case,
and the proof that each such derivation is inner [26,40,42,78]
led to a flurry of activity on automorphisms and derivations. 1In
[43], automorphisms not on the surface of the ball of radius 2
with the identity automorphism as center were shown to be inner,
and the structure of the automorphism group of a special class of
C*-algebras was studied. Borchers [3] extended a result of [40]
to groups of automorphisms of a von Neumann algebra in the context
of the operator algebra formulation of quantum field theory. (See
also Dell'Antonio's paper [4].) 1In this period, Pedersen
introduced his important ideal in the framework of a non-commuta-
tive version of measure theory in C*-algebras [66,67,68,69], and
Effros, Stgrmer and Topping [13,86,87,98] advanced our understand-
ing of the Jordan structure of the family of self-adjoint
operators in an operator algebra., (Compare [27] where this
structure is first introduced as a mathematical model for quantum
mechanics, [81] where it is directly related to the norm-closed
algebras for the same purpose, and [29,30] where the first results
are proved relating the Jordan structure to that of its
enveloping C*-algebra,)

In 1967, two results appeared that were to affect the course
of operator algebras profoundly. One, of Powers [70], established
that there is a continuum of non-isomorphic, matricial factors of

type III, the other, of Tomita [96] supplied, for a factor with



a separating and generating vector, a fundamental construction
relating the factor to its commutant and producing a quite
unexpected one-parameter group of automorphisms of the factor.

As luck would have it, both results were discovered during
the planning stage of the conference in Baton Rouge, Louisiana
(the forerunner of the present conference). Both results were
discussed at the conference and received the widest dissemination,
At this same time Haag, Hugenholtz, and Winnink, in an important
paper [23] relating quantum statistical mechanics and 6perator
algebras introduced the KMS condition. The conjunction of KMS
theory and that of Tomita's "“modular" theory at the same
conference could not have been more fortuitous, for these theories
could hardly be more intimately related. 1In Takesaki's hands [94],
the combined KMS and modular theory has become the driving force
of the modern theory of operator algebras. Understanding the
significance of the results of Powers and Tomita occupied the
last part of the sixties. 1In particular, the classification of
type III factors that appear as the (infinite) tensor product of
finite type I factors by Araki and Woods [2] is one consequence
of this process.

The explosion of results that has characterized the seventies
is very much the result of the early groundwork and the
remarkable breakthroughs of the mid to late sixties. It is, too,
very much the subject of these volumes. In the pages that follow,
a detailed account will be found of operator algebras as it is
Practiced today. We commend this exposition to the reader with
the hope that our summary of the beginnings and middle period
in the development of the theory of operator algebras helps in
understanding the motivation for and significance of the results

discussed.
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